Whereas quantum computing circuits follow the symmetries of the unitary Lie group, classical reversible computation circuits follow the symmetries of a finite group, i.e. the symmetric group. We confront the decomposition of an arbitrary classical reversible circuit with w bits and the decomposition of an arbitrary quantum circuit with w qubits. Both decompositions use the control gate as building block, i.e. a circuit transforming only one (qu)bit, the transformation being controlled by the other w-1 (qu)bits. We explain why the former circuit can be decomposed into 2w-1 control gates, whereas the latter circuit needs 2^w-1 control gates. We investigate whether computer circuits, not based on the full unitary group but instead on a subgroup of the unitary group, may be decomposable either into 2w-1 or into 2^w-1 control gates.
http://ift.tt/2sjLsAZ
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου