Abstract
In spite of extensive studies on multispecies toxigenic cyanobacterial blooms, they are still difficult to eliminate, and factors regulating their succession and toxin production remain still to discover. A 4-year study revealed periodical mass development of diazotrophic Nostocales such as Dolichospermum spp. (previously Anabaena), Aphanizomenon gracile and expansive Cuspidothrix (previously Aphanizomenon) issatschenkoi in a lake affected by perennial blooms of Planktothrix agardhii (Oscillatoriales). Compared to Oscillatoriales, Nostocales reached the highest total biomass (up to 16 mg L−1) and contributed nearly 33–85 % to the total biomass of filamentous cyanobacteria at higher water temperatures (average values 17.5–22.6 °C) and higher ratio (11.8–14.1) of dissolved inorganic nitrogen to dissolved inorganic phosphorus (DIN/DIP). Species structure of Nostocales changed considerably from year to year as indicated by the Jaccard similarity index (0.33–0.78). Concentrations of intracellular anatoxin-a (ANTX) ranged from 0.03 to 2.19 μg L−1 of the lake water, whilst extracellular toxin reached up to 0.55 μg L−1. The highest positive correlations were found between the intracellular ANTX and the biomass of Dolichospermum spp. (R 2 = 0.73) and C. issatschenkoi (R 2 = 0.43–0.65). Our study suggests that ANTX production by Dolichospermum depended mainly on water temperature, whereas that by C. issatschenkoi was related to water conductivity and DIN/DIP ratio. P-PO4 concentrations also seemed to be important. The relatively short-term mass development of neurotoxic Nostocales is an additional threat to shallow, highly eutrophic water bodies continuously affected by Oscillatoriales blooms and may be controlled mainly by the DIN/DIP ratio. ANTX should be considered as a pollutant of freshwaters.
from #MedicinebyAlexandrosSfakianakis via xlomafota13 on Inoreader http://ift.tt/2aLIxrG
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου