Αρχειοθήκη ιστολογίου

Τετάρτη 26 Ιουνίου 2019

Inhibition of the receptor for advanced glycation inhibits lipopolysaccharide-mediated High mobility group protein B1 and Interleukin-6 synthesis in human gingival fibroblasts through the NF-κB signaling pathway
Publication date: Available online 26 June 2019
Source: Archives of Oral Biology
Author(s): Jialin Huang, Ting Xiong, Zhenzhen Zhang, Yujie Tan, Ling Guo
Abstract
Aims
We investigated the effect of a specific inhibitor of the receptor for advanced glycation (FPS-ZM1) against lipopolysaccharide (LPS)-induced increase in expressions of high mobility group protein B1 (HMGB1) and interleukin-6 (IL-6) in human gingival fibroblasts (HGFs). Furthermore, we explored the potential molecular mechanisms and assessed the involvement of the NF-κB pathway in mediating the changes in the expressions of HMGB1 and IL-6 expression in response to LPS and FPS-ZM1.
Methods
HGFs were cultured with enzymatic digestion-tissue explants method. The proliferation of LPS-stimulated HGFs pretreated with FPS-ZM1 at 24, 48, and 72 h was determined by cell counting kit 8 assay. The expressions of HMGB1 and IL-6 were measured using quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. Western blot analysis was used to assess the expressions of receptor for advanced glycation end products (RAGE) and NF-κB.
Results
LPS enhanced the protein expression of RAGE in HGFs. At the same time, LPS stimulated mRNA and protein expressions of HMGB1 and IL-6 in HGFs. However, pretreatment with FPS-ZM1 attenuated these effects. Pretreatment with FPS-ZM1 (250, 500 nM) significantly inhibited the LPS-induced NF-κB activity.
Conclusion
FPS-ZM1 down-regulated the LPS-induced HMGB1 and IL-6 expression in HGFs through blocking NF-κB activation. FPS-ZM1 is a promising therapeutic agent for inflammatory diseases caused by oral bacteria.
Graphical Abstract

Graphical abstract for this article

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου