Αρχειοθήκη ιστολογίου

Δευτέρα 21 Μαΐου 2018

Interaction of Bacterial Phenazines with Colistimethate in Bronchial Epithelial Cells [PublishAheadOfPrint]

Multidrug-resistant bacterial infections are being increasingly treated in clinics with polymyxins, a class of antibiotics associated with adverse effects in the kidney, nervous system, or airways of a significant proportion of human and animal patients. Although many of the resistant pathogens display enhanced virulence, a hazard of cytotoxic interactions between polymyxin antibiotics and bacterial virulence factors (VFs) has not been assessed, to date. We report here on testing paired combinations of four Pseudomonas aeruginosa VF phenazine toxins, pyocyanin (PYO), 1-hydroxyphenazine (1-HP), phenazine-1-carboxylic acid (PCA), phenazine-1-carboxamide (PCN), and two commonly prescribed polymyxin drugs, colistimethate (CMS)/colistin and polymyxin B, in three human airway cell lines, BEAS-2B, HBE-1, and CFT-1. Cytotoxicities of individual antibiotics, toxins, and their combinations were evaluated by simultaneous measurement of mitochondrial metabolic, total transcriptional/translational, and the Nrf2 stress response regulator activities in treated cells. Two phenazines, PYO and 1-HP, were cytotoxic at clinically relevant concentrations (100-150 μM) and prompted a significant increase in the oxidative stress-induced transcriptional activity in surviving cells. The polymyxin antibiotics arrested the cell proliferation at clinically achievable (< 1 mM) concentrations, as well, with CMS displaying a surprisingly high cytotoxicity (ED50 = 180 μM) in BEAS-2B. The dose-response curves were probed by the median-effect analysis which established a synergistically enhanced cytotoxicity of the PYO/CMS combination in all three airway cell lines; a particularly strong effect was observed in the BEAS-2B cells, with the combination index (CI) = 0.27 at ED50. PCA, PCN, and 1-HP potentiated CMS cytotoxicity to a smaller extent. The cytotoxicity of CMS could be reduced with 10 mM N-acetyl-cysteine. Iron chelators, while ineffective against the polymyxins, could rescue all three bronchial epithelial cell lines treated with lethal PYO or CMS/PYO doses. These findings suggest further evaluations of CMS safety are needed, along with a search for means to moderate the potentially cytotoxic interactions.



https://ift.tt/2x2xhUX

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου