Abstract
Full-night polysomnography (PSG) has been recognized as the gold standard test for sleep apnea–hypopnea syndrome (SAHS). However, PSG examinees are physically restrained for the full night by many contact sensors and obtrusive connecting cables, inducing mental stress. We developed a non-contact SAHS diagnostic system that can detect apneic events without inducing stress in monitored individuals. Two Doppler radars were installed beneath the mattress to measure the vibrations of the chest and abdomen, respectively. Our system determines apnea and hypopnea events when the radar output amplitude decreases by <20 and 70 %, respectively, of the amplitude of a normal breath (without SAHS events). Additionally, we proposed a technique that detects paradoxical movements by focusing on phase differences between thoracic and abdominal movements, and were able to identify three types of sleep apnea: obstructive, central, and mixed. Respiratory disturbance indexes obtained showed a higher correlation (r = 94 %) with PSG than with pulse oximetry (r = 89 %). When predicting the severity of SAHS with an apnea–hypopnea index (AHI) of >15/h or >30/h using PSG as a reference, the radar system achieved a sensitivity of 96 and 90 %, and a specificity of 100 and 79 % with an AHI of >15/h and >30/h, respectively. The proposed radar system can be used as an alternative to the current airflow sensor, and to chest and abdomen belts for apnea–hypopnea evaluation.
from #MedicinebyAlexandrosSfakianakis via xlomafota13 on Inoreader http://ift.tt/23Vx1NH
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου