Αρχειοθήκη ιστολογίου

Τετάρτη 20 Απριλίου 2016

The Design of Antimicrobial LL37-Modified Collagen-Hyaluronic Acid Detachable Multilayers

Publication date: Available online 19 April 2016
Source:Acta Biomaterialia
Author(s): Margaret E. Cassin, Andrew J. Ford, Sophia M. Orbach, Scott E. Saverot, Padmavathy Rajagopalan
The design of antimicrobial membranes and thin films are critical for the design of biomaterials that can combat bacterial contamination. Since the long-term use of conventional antibiotics can result in bacterial resistance, there is a critical need to incorporate natural antimicrobial peptides (AMPs) that not only prevent a wide range of pathogens from causing infections but can also promote many beneficial outcomes in wounded tissues. We report the design and antimicrobial properties of detachable collagen (COL)/hyaluronic acid (HA) polyelectrolyte multilayers (PEMs) modified with LL-37, a naturally occurring human AMP. LL-37 was physically adsorbed and chemically immobilized on the surface of PEMs. The antimicrobial and cytotoxic properties of PEMs were tested with Gram-negative Escherichia coli (E. coli, strain DH10B) and primary rat hepatocytes, respectively. The ability to prevent bacterial adhesion and to neutralize an E. coli layer was investigated as a function of LL-37 concentration. An interesting trend was that even unmodified PEMs exhibited a 40% reduction in bacterial adhesion. When LL-37 was physically adsorbed on PEMs, bacterial adhesion was significantly lower on the surface of the films as well as in the surrounding broth. Immobilizing LL-37 resulted in less than 3% bacterial adhesion on the surface due to the presence of the peptide. LL-37 modified PEMs did not result in any cytotoxicity up to input concentrations of 16 μM. More importantly, urea and albumin secretion by hepatocytes were unaffected even at high LL-37 concentrations. The COL/HA PEMs can serve as antimicrobial coatings, biological membranes and as in vitro platforms to investigate pathogen-tissue interactions.Statement of SignificanceAntimicrobial peptides (AMPs) are emerging as an alternative to conventional antibiotics. We report the antimicrobial properties of detachable collagen (COL)/hyaluronic acid (HA) polyelectrolyte multilayers (PEMs) modified with LL-37, a human AMP. The antimicrobial and cytotoxic properties were tested with gram-negative Escherichia coli (E. coli, strain DH10B) and primary rat hepatocytes, respectively. Unmodified PEMs exhibited a 40% reduction in bacterial adhesion. When LL-37 was physically adsorbed on PEMs, the sustained release of the active peptide killed planktonic bacteria. Immobilizing LL-37 resulted in resulted in less than 3% bacterial adhesion. LL-37 modified PEMs did not result in cytotoxicity up to input concentrations of 16μM. The COL/HA PEMs can serve as antimicrobial coatings and to investigate pathogen-cell interactions.

Graphical abstract

image


from #MedicinebyAlexandrosSfakianakis via xlomafota13 on Inoreader http://ift.tt/1WdIdmk
via IFTTT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου