Abstract
Objective
The present study aimed to investigate the effect of 18F-fluorodeoxyglucose (FDG) extravasation on the time taken for tumoral uptake to reach a plateau.
Methods
For the animal experiment, FDG extravasation was conducted in the tails of HCT116 tumor-bearing xenograft mice models in three groups (no extravasation, 40 % extravasation, and 80 % extravasation; n = 5, each). Dynamic positron emission tomography (PET) images were acquired over a period of 2 h following injection. Time–activity curves for FDG in the tails and tumors were calculated. For the clinical experiment, 22 patients (male:female, 14:8; age range, 70.8 ± 9.2 years) were subjected to PET/computed tomography (PET/CT) 1 h after the injection of FDG. The inclusion criteria were as follows: (1) submitted to both whole-body and subsequent regional scanning; (2) entire extravasation activity visualized in the whole-body images; (3) tumor visualized on both whole-body and additional regional images; and (4) status of tumor either confirmed by biopsy or clinically suspected for malignancy. The standardized uptake values (SUVs) of the tumors (on the whole-body and additional PET images) and extravasation sites were recorded.
Results
There were no significant differences in the time taken for tumoral uptake to reach a plateau and that to reach minimum activity at the extravasation site among the three groups of mice. However, the mean tumoral activity and activity at the extravasation site were negatively correlated at 1 h post-injection. According to the clinical PET findings, the differences in SUV between the whole-body and regional images were not significantly correlated with the interval between injection of FDG and start of whole-body scanning, interval between the start of whole-body scanning and start of regional scanning, extravasation volume, maximum SUV of the extravasation site, or total activity at the extravasation site.
Conclusions
The time taken for tumoral uptake to reach a plateau is not affected by extravasation, even at extensive degrees. Thus, in routine practice, the imaging time of approximately 60 min post-injection need not be modified even if extravasation is identified. However, tumor SUV may be underestimated in cases of extravasation.
from #MedicinebyAlexandrosSfakianakis via xlomafota13 on Inoreader http://ift.tt/1UxhNdD
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου