Αρχειοθήκη ιστολογίου

Τετάρτη 20 Ιουλίου 2016

Identification of V-ATPase as a molecular sensor of SOX11-levels and potential therapeutic target for mantle cell lymphoma

Abstract

Background

Mantle cell lymphoma (MCL) is an aggressive disease with short median survival. Molecularly, MCL is defined by the t(11;14) translocation leading to overexpression of the CCND1 gene. However, recent data show that the neural transcription factor SOX11 is a disease defining antigen and several involved signaling pathways have been pin-pointed, among others the Wnt/β-catenin pathway that is of importance for proliferation in MCL. Therefore, we evaluated a compound library focused on the Wnt pathway with the aim of identifying Wnt-related targets that regulate growth and survival in MCL, with particular focus on SOX11-dependent growth regulation.

Methods

An inducible SOX11 knock-down system was used to functionally screen a library of compounds (n = 75) targeting the Wnt signaling pathway. A functionally interesting target, vacuolar-type H+-ATPase (V-ATPase), was further evaluated by western blot, siRNA-mediated gene silencing, immunofluorescence, and flow cytometry.

Results

We show that 15 out of 75 compounds targeting the Wnt pathway reduce proliferation in all three MCL cell lines tested. Furthermore, three substances targeting two different targets (V-ATPase and Dkk1) showed SOX11-dependent activity. Further validation analyses were focused on V-ATPase and showed that two independent V-ATPase inhibitors (bafilomycin A1 and concanamycin A) are sensitive to SOX11 levels, causing reduced anti-proliferative response in SOX11 low cells. We further show, using fluorescence imaging and flow cytometry, that V-ATPase is mainly localized to the plasma membrane in primary and MCL cell lines.

Conclusions

We show that SOX11 status affect V-ATPase dependent pathways, and thus may be involved in regulating pH in intracellular and extracellular compartments. The plasma membrane localization of V-ATPase indicates that pH regulation of the immediate extracellular compartment may be of importance for receptor functionality and potentially invasiveness in vivo.



from #MedicinebyAlexandrosSfakianakis via xlomafota13 on Inoreader http://ift.tt/29Tl2zB
via IFTTT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου