Background
Endoscopic sinus surgery poses unique training challenges due to complex and variable anatomy, and the risk of major complications. We sought to create and provide validity evidence for a novel 3D-printed simulator of the nose and paranasal sinuses.
Methods
Sinonasal computed tomography (CT) images of a patient were imported into 3D visualization software. Segmentation of bony and soft tissue structures was then performed. The model was printed using simulated bone and soft tissue materials. Rhinologists and otolaryngology residents completed 6 prespecified tasks including maxillary antrostomy and frontal recess dissection on the simulator. Participants evaluated the model using survey ratings based on a 5-point Likert scale. The average time to complete each task was calculated. Descriptive analysis was used to evaluate ratings, and thematic analysis was done for qualitative questions.
Results
A total of 20 participants (10 rhinologists and 10 otolaryngology residents) tested the model and answered the survey. Overall the participants felt that the simulator would be useful as a training/educational tool (4.6/5), and that it should be integrated as part of the rhinology training curriculum (4.5/5). The following responses were obtained: visual appearance 4.25/5; realism of materials 3.8/5; and surgical experience 3.9/5. The average time to complete each task was lower for the rhinologist group than for the residents.
Conclusion
We describe the development and validation of a novel 3D-printed model for the training of endoscopic sinus surgery skills. Although participants found the simulator to be a useful training and educational tool, further model development could improve the outcome.
http://ift.tt/2tmzUKP
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου