Publication date: Available online 21 November 2017
Source:Bioorganic & Medicinal Chemistry
Author(s): Wei-Jie Fang, Thomas F. Murray, Jane V. Aldrich
Kappa (κ) opioid receptor selective antagonists are useful pharmacological tools in studying κ opioid receptors and have potential to be used as therapeutic agents for the treatment of a variety of diseases including mood disorders and drug addiction. Arodyn (Ac[Phe1–3,Arg4,D-Ala8]Dyn A-(1-11)NH2) is a linear acetylated dynorphin A (Dyn A) analog that is a potent and selective κ opioid receptor antagonist (Bennett et al. J. Med. Chem. 2002;45:5617-5619) and prevents stress-induced reinstatement of cocaine-seeking behavior following central administration (Carey et al. Eur J Pharmacol 2007;569:84-89). To restrict its conformational mobility, explore possible bioactive conformations and potentially increase its metabolic stability we synthesized cyclic arodyn analogs on solid phase utilizing a novel ring-closing metathesis (RCM) reaction involving allyl-protected Tyr (Tyr(All)) residues. This approach preserves the aromatic functionality and directly constrains the side chains of one or more of the Phe residues. The novel cyclic arodyn analog 4 cyclized between Tyr(All) residues incorporated in positions 2 and 3 exhibited potent κ opioid receptor antagonism in the [35S]GTPγS assay (KB = 3.2 nM) similar to arodyn. Analog 3 cyclized between Tyr(All) residues in positions 1 and 2 also exhibited nanomolar κ opioid receptor antagonist potency (KB = 27.5 nM) in this assay. These are the first opioid peptides cyclized via RCM involving aromatic residues, and given their promising pharmacological activity represent novel lead peptides for further exploration.
Graphical abstract
from #MedicinebyAlexandrosSfakianakis via xlomafota13 on Inoreader http://ift.tt/2iEyV5s
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου