Purpose
To develop and prove preliminary validation of a fast in vivo T2 mapping technique for mouse heart.
Materials and Methods
Magnetic resonance imaging (MRI) experiments were performed on a 7T animal scanner. The standard Carr–Purcell–Meiboom–Gill (CPMG) sequence was modified to minimize the effect of stimulated echoes for accurate T2 quantification. The acquisition was further accelerated with the compressed sensing approach. The accuracy of the proposed method was first validated with both phantom experiments and numerical simulations. In vivo T2 measurement was performed on seven mice in a manganese-enhanced MRI study.
Results
In phantom studies, T2 values obtained with the modified CPMG sequence are in good agreement with the standard spin-echo method (P > 0.05). Numerical simulations further demonstrated that with the application of the compressed sensing approach, fast T2 quantification with a spatial resolution of 2.3 mm can be achieved at a high temporal resolution of 1 minute per slice. With the proposed technique, an average T2 value of 25 msec was observed for mouse heart at 7T and this number decreased significantly after manganese infusion (P < 0.001).
Conclusion
A rapid T2 mapping technique was developed and assessed, which allows accurate T2 quantification of mouse heart at a temporal resolution of 1 minute per slice. J. Magn. Reson. Imaging 2016.
from #MedicinebyAlexandrosSfakianakis via xlomafota13 on Inoreader http://ift.tt/20RexfQ
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου