Abstract
The crustaceans are one of the largest, most diverse, and most successful groups of invertebrates. The diversity among the crustaceans is also reflected in embryonic development models. However, the molecular genetics that regulates embryonic development is not known in those crustaceans that have a short germ-band development with superficial cleavage, such as Macrobrachium olfersi. This species is a freshwater decapod and has great potential to become a model for developmental biology, as well as for evolutionary and environmental studies. To obtain sequence data of M. olfersi from an embryonic developmental perspective, we performed de novo assembly and annotation of the embryonic transcriptome. Using a pooling strategy of total RNA, paired-end Illumina sequencing, and assembly with multiple k-mers, a total of 25,636,097 pair reads were generated. In total, 99,751 unigenes were identified, and 20,893 of these returned a Blastx hit. KEGG pathway analysis mapped a total of 6866 unigenes related to 129 metabolic pathways. In general, 21,845 unigenes were assigned to gene ontology (GO) categories: molecular function (19,604), cellular components (10,254), and biological processes (13,841). Of these, 2142 unigenes were assigned to the developmental process category. More specifically, a total of 35 homologs of embryonic development toolkit genes were identified, which included maternal effect (one gene), gap (six), pair-rule (six), segment polarity (seven), Hox (four), Wnt (eight), and dorsoventral patterning genes (three). In addition, genes of developmental pathways were found, including TGF-β, Wnt, Notch, MAPK, Hedgehog, Jak-STAT, VEGF, and ecdysteroid-inducible nuclear receptors. RT-PCR analysis of eight genes related to embryonic development from gastrulation to late morphogenesis/organogenesis confirmed the applicability of the transcriptome analysis.
from #MedicinebyAlexandrosSfakianakis via xlomafota13 on Inoreader http://ift.tt/1UfPsdd
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου